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Separable amide rotamers were prepared with moderate to excellent Z-selectivities by N-allylation of
2,4,6-tri-tert-butyl-NH-anilides using a p-allyl-Pd catalyst. The present allylation proceeded through a
unique mechanism involving O-allylation and the subsequent O,N-allylic rearrangement. The prepared
amide rotamers of Z-major changed to equilibrium mixtures of E-major when heated in toluene.
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N-Substituted ortho-tert-butylanilide derivatives often show
interesting structural properties. For example, ortho-mono-tert-
butylanilides I are stable atropisomeric compounds due to the
rotational restriction of the N–Ar bond, and have recently received
much attention as a new class of chiral molecules having an N–C
chiral axis (Eq. 1).1
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On the other hand, in 2,6-di-tert-butylanilide derivatives II
(achiral), the amide rotational isomer can be isolated by rota-
tional restriction around the C(O)–N bond (the rotational barri-
ers = 27–28 kcal/mol) as well as the N–Ar bond (Eq. 1).2

Although such anilides II, which were reported by Chupp et al.
in 1967, should be noted as rare examples of separable amide
rotamers,2,3 systematic investigation using other anilide sub-
strates except for a-haloacetanilides II (X = Cl, Br, I) have not
been performed. Moreover, since their synthesis through the
acylation of N-methyl-2,6-di-tert-butylaniline III requires high
reaction temperature (100–140 �C) because of the low reactivity
of III, the mixtures of E- and Z-rotamers were obtained in a near
equilibrium ratio (E/Z = 5.6–9, Eq. 2). Thus, the stereoselective
synthesis of the thermodynamically unstable Z-rotamer (Z-II)
has not yet been established.
ll rights reserved.
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In connection with our study on atropisomeric ortho-mono-
tert-butylanilides,4 we felt an interest in 2,6-di-tert-butylanilide
derivatives. In this Letter, we report Z-rotamer-selective synthesis
of various N-allylated 2,4,6-tri-tert-butylanilides through allylation
using a p-ally-Pd catalyst. Furthermore, unique reaction
mechanism of the present allylation, involving O-allylation and
subsequent O,N-allylic rearrangement, and investigation on
isomerization of these anilide rotamers under thermal conditions
are also described.

2,6-Di- and 2,4,6-tri-tert-butyl-NH-anilides are known to exist
as equilibrium mixture of Z-major (Z/E ’ 8) in solution.5 Accord-
ingly, it was expected that Z-rotamer may be obtained as a
major isomer by N-alkylation of 2,6-di- or 2,4,6-tri-tert-butyl-
NH-anilide. N-Allylation with NH-anilide 1a prepared from
commercially available 2,4,6-tri-tert-butylaniline was initially
examined. However, the reaction of the amide anion from 1a
and NaH with allyl bromide in DMF gave O-allylated imidate
3a in a good yield in place of the desired N-allylated anilide
2a (Eq. 3). This unusual O-allylation should be specific to 2,6-
di-tert-butyl derivatives, because allylation with ortho-mono-
tert-butylanilide under the same conditions gave a quantitatively
N-allylated product.
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Table 1
Z-Selective N-allylation of various 2,4,6-tri-tert-butyl anilides

NaH

5.0 mol% dppf
2.2 mol% (allyl-Pd-Cl)2
1.5 eq. CH2=CH-CH2OAc

DMF, rt, 15 h
E-2Z-2 +

2.3 eq.

(major) (minor)
1

NH

R

t-Bu t-Bu

t-Bu

O

Entry 1 R 2 Yielda (%) Z/Eb

1 1a Et 2a 99 4.9
2 1b Me 2b 91 3.2
3 1c Me2CH 2c 99 >50
4 1d Cyclohexyl 2d 81 >50
5 1e MeO2C 2e 85 >50
6 1f p-Br–C6H4 2f 38 >50
7 1g MeCH@CH 2g 70 3

a Isolated yield.
b The ratio was estimated by 300 MHz 1H NMR.
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The formation of such an O-alkylation product was also ob-
served in the reaction of 1a with iodomethane, in this case, a mix-
ture of N- and O-methylation products 4a and 5a was obtained in
57% and 39% yields, respectively (Eq. 3). The steric crowd around
the amide nitrogen atom by two ortho-tert-butyl groups should
cause the unusual O-alkylation of 1a.

After surveying several reactions, we found that the N-allylation
of 1a efficiently proceeds by using p-allyl-Pd complex.6 That is,
when amide anion prepared from 1a and NaH (2.3 equiv) was trea-
ted with allyl acetate in the presence of rac-BINAP-(allyl-Pd-Cl)2

catalyst in DMF at rt, anilide 2a was obtained in a good yield
(80%) without the formation of imidate 3a (Scheme 1). Further-
more, in the present reaction, Z-2a was obtained as a major rot-
amer (Z/E = 4).

By careful TLC monitoring, it was found that in the present reac-
tion, imidate 3a is initially formed and then the resulting 3a
changes to anilide 2a via reproduction of p-allyl-Pd complex and
anilide anion (Scheme 1). Indeed, smooth conversion to N-allylated
amide 2a was observed by treating isolated 3a with BINAP-Pd cat-
alyst and NaH (1 equiv). As far as we know, in allylations of amide
derivatives using a p-allyl-Pd complex, there has been no report on
a reaction which proceeds via such O-allylation and subsequent
O,N-allylic rearrangement.7,8
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Scheme 1. N-Allylation of 2,4,6-tri-tert-butyl-NH-anilide using p-allyl-Pd catalyst.
The use of dppf as a phosphine ligand led to a further increase in
the chemical yield and Z-rotamer selectivity, in this case, 2a was
obtained with an excellent yield (99%) in a ratio of Z/E = 4.9 (Table
1, entry 1). Under optimized conditions [NaH (2.3 equiv), allyl ace-
tate (1.5 equiv), dppf (5.0 mol %) and (allyl-Pd-Cl)2 (2.2 mol %) in
DMF at rt], N-allylations of various 2,4,6-tri-tert-butyl-NH-anilides
1 were further examined (Table 1).9 In the reaction with acetani-
lide derivative 1b, a slight decrease in Z-rotamer selectivity was
observed (Z-2b/E-2b = 3.2, entry 2). On the other hand, the reaction
of anilides 1c and 1d prepared from a-branched carboxylic acid
proceeded in almost a complete Z-selective manner (entries 3
and 4). The reaction with amidester 1e and benzamide 1f also gave
Z-2e and Z-2f with almost complete selectivity (entries 5 and 6),
while with a,b-unsaturated amide 1g, product 2g was obtained
with moderate Z-selectivity (Z/E = 3, entry 7). These reactions pro-
ceeded with good to excellent yields (70–99%, entries 1–5 and 7)
except for that of benzamide 1f (entry 6, 38%).10

Z-Selectivity observed in the present reaction may be rational-
ized in accordance with the transition state model shown in Figure
1.11 The transition state (TS-E) for E-2 may be disfavored in com-
parison with TS-Z for Z-2 because of the steric repulsion between
substituent R and the ortho-tert-butyl group in the iminoalcoholate
intermediate. In the reactions of 1c and 1d having bulky substitu-
ent R, such as isopropyl and cyclohexyl groups, excellent Z-selec-
tivity would be observed by further destabilization of TS-E.

Next, the thermodynamic behavior of the obtained various
N-allyl anilides 2a–g was investigated. 2a–g existed without
isomerization between the E- and Z-rotamers for several days at
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Figure 1. Transition state model for Z-selective N-allylation.
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Figure 2. Thermal isomerization between E-2 and Z-2.
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rt. Meanwhile, 2a–g of Z-major changed to equilibrium mixture of
E-major when heated for 10–30 h at 100 �C in toluene (Fig. 2). The
equilibrium ratio (E/Z = 1.4–10) considerably depended on substi-
tuent R. The E-rotamer preference of 2 may be explained on the ba-
sis of n–p repulsion between the lone pairs on the carbonyl oxygen
and aromatic ring, and steric repulsion between R and allyl group
(Fig. 2).12 Namely, the destabilization of the Z-rotamer due to both
the n–p repulsion and the steric repulsion may bring about the E-
rotamer preference.4c,12,13 In the cases of 1c and 1d having bulky
substituent R, the decrease in the E/Z ratio of 2 should be observed
because of strong steric repulsion between R and the tert-butyl-
phenyl group in E-2 (E/Z = 1.4).

In conclusion, we succeeded in the development of stereoselec-
tive synthetic method of separable amide rotamer through N-ally-
lation using p-allyl-Pd catalyst. This result should be noted as very
few examples of kinetically controlled stereoselective synthesis of
separable amide rotamers.3c,d,14 Furthermore, the interesting
mechanism of the present N-allylation, which proceeds via O-ally-
lation and subsequent O,N-allylic rearrangement, and the thermo-
dynamic stabilities of the various prepared amide rotamers were
clarified. Rotamers based on an amide C(O)–N bond play an impor-
tant role in the regulation of the actions in biologically active pep-
tides and functional molecules having amide skeletons.15 Thus, the
present work should provide broad interest from the viewpoint of
structural organic chemistry as well as unique stereoselective reac-
tion (rotamer-selective reaction) and p-allyl-Pd chemistry.

Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.tetlet.2008.07.017.
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